

GRAVITY-FED WATER DISTRIBUTION SYSTEM BUCORI, PANAMA

TERRIANNA BRADLEY, SAMANTHA FENTRESS, COURTNEY FOURNIER, KRISTINA RUSHLAU

OUTLINE

- Mission Statement
- iDesign
- Background
 - Community/Politics
 - Project
- Methods
- Design Components
- Schedule
- Cost Estimations
- Conclusions and Recommendations
- Questions

PROJECT MISSION STATEMENT

Create a pipe network that will distribute water from 3 springs to the neighborhood of Central Bucori. Water will be treated individually at home.

INTERNATIONAL SENIOR DESIGN - IDESIGN

- 2 weeks in Panama
- Help developing communities
- Peace Corps Volunteer host during community stay
- 2016 iDesign: 11 students
 - 2 water teams
 - I bridge team
- Spent the semester working on design projects

SUMMARY OF TRIP

Day 3-11:Traveling to Communities

Data Collection

Day 1-3:

- Exploring Panama City
- Community Prep

Day 11-14:DebriefPresentations

TRAVEL DETAILS

INTRODUCTION – COMMUNITY BACKGROUND

- Bucori, Panama
- Bucori was founded by the current president's grandfather
 - Banana farm lawsuit over wages
- Wooden houses built on stilts to be safe from heavy rains
- Many streams in neighborhood of Central Bucori

INTRODUCTION – PROJECT POLITICS

- Community Leader
 - Faustino
- Water Committee
 - 7 positions. Only 3 are filled with active members
- Peace Corps Volunteer (PCV), Taylor Domagalla
- Project Funding
 - \$8000 grant PCV to submit application
- Community Contribution
 - Each house pay \$1/month for system maintenance

INTRODUCTION – PROJECT BACKGROUND

- Water source 3 springs
- System
 - From springs to large holding tank
 - From tank to community
- Access to water 38 faucets
 - 7 Community Buildings
 - 31 homes (Average of 5 people per house)

INTRODUCTION – PROJECT BACKGROUND

- Design Components
 - 9 stream crossings
 - 1 valley crossing
 - 1 river crossing
 - Spring boxes
 - Holding tank

METHODS - SURVEYING OUTLINE

- Gallon Jug and Timer
 - Calculate flow rates of springs
- Petri Films
 - Water Quality Test
- Garmin GPS
 - GPS Coordinates of each location
- Water Leveling
 - Measures level differences across a surface
- Nikon Laser Rangefinder
 - Measure angle of elevation
- Measuring Tape
 - Measure distance between sites

METHODS - ANALYSIS

EPANET – HYDRAULIC SIMULATION SOFTWARE

METHODS-ANALYSIS

Hazen Williams Equation h_L = 4.727C^{-1.852} * d^{-4.871} * L

h_L= Headloss (m) C = Coefficient for specific pipe material; PVC d = Diameter of pipe (mm) L = Length between nodes (m)

DESIGN - SPRING BOXES

- What is a spring?
- Three Spring Boxes
- Capture water directly from the spring source and protect it from contamination
- Cleanout and overflow pipes will contain mesh screen to prevent contamination.

DESIGN - HOLDING TANK

Dimensions:

- 22 m³ (~6,000 gal)
- L x W x H
 - 3.92m x 3.92m x 2.38m

Water Supply

 Meets current demand for 4 days

DESIGN - PIPING NETWORK

- SDR-26 PVC Piping
 - 2-inch piping Main Network
 - 1.5-inch piping on branches of network
- Pipe Fittings
 - 135 elbows, 400 unions, and 35 Y/T fittings
 - Cleanout/Air Valves
- UV spray for Protection and Maintenance

- River Crossing
 - 40 meters
 - Suspension system holding the pipe
 - 4" pipe for protection

- Valley crossing
 - 13.5 meters
 - Suspension system
 - 4" pipe for protection

- Stream Crossings
 - Case 1
 - No extra support needed
 - < 10 m span</p>
 - No risk of washout

< 10 m

- Stream Crossings
 - Case 2
 - Extra support needed
 - < 10 m span</p>
 - Risk of washout

WATER TREATMENT

- Water will be treated in home
 - Lack of community support
 - Difficult access to holding tank
- Bottle of Chlorine
 - 1 bottle (250 mg) of chlorine every 50 days for 5-person family
 - 0.02 mg chlorine per 1 L of water

CONSTRUCTION SCHEDULE

- Project will take 40 work days
 - 6-8 hours/work day
- Upwards of 6 people per task
 - Labor provided by community volunteers
- Materials and equipment bought in city and transported by canoe

Total Cost: \$15,300

CONCLUSIONS - RECOMMENDATIONS - NEXT STEPS

Improve quality of life

- Ease of water access
- Education will be provided by Peace Corps Volunteer
 - Maintenance of the system
 - Importance of sanitizing drinking water
 - Water committee training and development
- Grant proposal for funding

ACKNOWLEDGMENTS AND FINAL THOUGHTS...

Mesele

Beli

MUTIN

Luis

Questions?

State or set

